Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(10): 3013-3024, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37306471

RESUMO

The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.


Assuntos
Engenharia Metabólica , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Fermentação , Triterpenos Pentacíclicos/metabolismo , Acetatos/metabolismo
2.
Synth Syst Biotechnol ; 8(1): 1-10, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36313217

RESUMO

Obtaining electroactive microbes capable of efficient extracellular electron transfer is a large undertaking for the scalability of bio-electrochemical systems. Inevitably, researchers need to pursue the co-modification of multiple genes rather than expecting that modification of a single gene would make a significant contribution to improving extracellular electron transfer rates. Base editing has enabled highly-efficient gene deactivation in model electroactive microbe Shewanella oneidensis MR-1. Since multiplexed application of base editing is still limited by its low throughput procedure, we thus here develop a rapid and efficient multiplex base editing system in S. oneidensis. Four approaches to express multiple gRNAs were assessed firstly, and transcription of each gRNA cassette into a monocistronic unit was validated as a more favorable option than transcription of multiple gRNAs into a polycistronic cluster. Then, a smart scheme was designed to deliver one-pot assembly of multiple gRNAs. 3, 5, and 8 genes were deactivated using this system with editing efficiency of 83.3%, 100% and 12.5%, respectively. To offer some nonrepetitive components as alternatives genetic parts of sgRNA cassette, different promoters, handles, and terminators were screened. This multiplex base editing tool was finally adopted to simultaneously deactivate eight genes that were identified as significantly downregulated targets in transcriptome analysis of riboflavin-overproducing strain and control strain. The maximum power density of the multiplex engineered strain HRF(8BE) in microbial fuel cells was 1108.1 mW/m2, which was 21.67 times higher than that of the wild-type strain. This highly efficient multiplexed base editing tool elevates our ability of genome manipulation and combinatorial engineering in Shewanella, and may provide valuable insights in fundamental and applied research of extracellular electron transfer.

3.
ACS Synth Biol ; 11(9): 2947-2955, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36048424

RESUMO

Homologous recombination-mediated genomic editing is urgently needed to obtain high-performance chassis of electroactive microorganisms. However, the existing tools cannot meet the requirement of genome-wide editing in Shewanella oneidensis. Here, we develop different CRISPR-Cas systems that are ideal to be employed in AT-rich sequences as the supplements to Cas9. AsCpf1 and BhCas12b show low cell toxicity and superior ability to target sequences and are thus screened out in S. oneidensis MR-1. The PAMs of AsCpf1 and BhCas12b are 5'-TTTV-3' and 5'-ATTN-3'. For gene deletion, ∼1-kb gene is knocked out and the editing efficiency is 41.67% by BhCas12b-mediated system. For gene replacement, endogenous promoter of nagK was substituted to a constitutive promoter with the efficiency of 25% through BhCas12b system. For gene insertion, the integration efficiency was up to 94.4% and 83.9% via CRISPR-BhCas12b and AsCpf1 tools. This study implies a great potential of CRISPR-BhCas12b/AsCpf1 systems recognizing AT-rich PAMs for genomic editing in S. oneidensis to facilitate multifaceted gene manipulation.


Assuntos
Edição de Genes , Shewanella , Sistemas CRISPR-Cas/genética , Recombinação Homóloga , Shewanella/genética
4.
Biotechnol Bioeng ; 119(10): 2806-2818, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798677

RESUMO

Shewanella oneidensis MR-1, as a model exoelectrogen with divergent extracellular electron transfer (EET) pathways, has been widely used in microbial fuel cells (MFCs). The electron transfer rate is largely determined by riboflavin (RF) and c-type cytochromes (c-Cyts). However, relatively low RF production and inappropriate amount of c-Cyts substantially impede the capacity of improving the EET rate. In this study, coupling of riboflavin de novo biosynthesis and c-Cyts expression was implemented to enhance the efficiency of EET in S. oneidensis. First, the upstream pathway of RF de novo biosynthesis was divided into four modules, and the expression level of 22 genes in above four modules was fine-tuned by employing promoters with different strengths. Among them, genes zwf*, glyA, and ybjU which exhibited optimal RF production were combinatorially overexpressed, leading to the enhancement of maximum output power density by 166%. Second, the diverse c-Cyts genes were overexpressed to match high RF production, and omcA was selected for further combination. Third, RF de novo biosynthesis and c-Cyts expression were combined, resulting in 2.34-fold higher power output than the parent strain. This modular and combinatorial manipulation strategy provides a generalized reference to advance versatile practical applications of electroactive microorganisms.


Assuntos
Elétrons , Shewanella , Citocromos/metabolismo , Transporte de Elétrons , Riboflavina/genética , Riboflavina/metabolismo , Shewanella/genética , Shewanella/metabolismo
5.
iScience ; 25(6): 104491, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35712075

RESUMO

Bio-electrochemical systems are based on extracellular electron transfer (EET), whose efficiency relates to the expression level of numerous genes. However, the lack of multi-functional tools for gene activation and repression hampers the enhancement of EET in electroactive microorganisms (EAMs). We thus develop a type I-F CRISPR/PaeCascade-RpoD-mediated activation and inhibition regulation (CRISPR-PAIR) platform in the model EAM, Shewanella oneidensis MR-1. Gene activation is achieved (3.8-fold) through fusing activator RpoD (σ70) to Cas7 when targeting the prioritized loci upstream of the transcription start site. Gene inhibition almost has no position preference when targeting the open reading frame, which makes the design of crRNAs easy and flexible. Then CRISPR-PAIR platform is applied to up-/down-regulate the expression of six endogenous genes, resulting in the improved EET efficiency. Moreover, simultaneous gene activation and inhibition are achieved in S. oneidensis MR-1. CRISPR-PAIR platform offers a programmable methodology for dual regulation, facilitating in-depth EET studies in Shewanella spp.

6.
ACS Synth Biol ; 11(6): 2184-2192, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35608070

RESUMO

Extracellular electron transfer (EET) of electroactive microorganisms (EAMs) is the dominating factor for versatile applications of bio-electrochemical systems. Shewanella oneidensis MR-1 is one of the model EAMs for the study of EET, which is associated with a variety of cellular activities. However, due to the lack of a transcriptional activation tool, regulation of multiple genes is labor-intensive and time-consuming, which hampers the advancement of improving the EET efficiency in S. oneidensis. In this study, we developed an easily operated and multifunctional regulatory tool, that is, a simultaneous clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional activation (CRISPRa) and interference (CRISPRi) system, for application in S. oneidensis. First, a large number of activators were screened, and RpoD (σ70) was determined as the optimal activator. Second, the effective activation range was identified to be 190-216 base upstream of the transcriptional start site. Third, up- and downregulation was achieved in concert by two orthogonal single guide RNAs targeting different positions. The activation of the cell division gene (minCDE) and repression of the cytotoxic gene (SO_3166) were concurrently implemented, increasing the power density by 2.5-fold and enhancing the degradation rate of azo dyes by 2.9-fold. The simultaneous CRISPRa and CRISPRi system enables simultaneous multiplex genetic regulation, offering the potential to further advance studies of the EET mechanism and application in S. oneidensis.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Shewanella , Transporte de Elétrons , Shewanella/genética , Shewanella/metabolismo , Ativação Transcricional/genética
7.
Adv Biol (Weinh) ; 6(3): e2101296, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182055

RESUMO

Shewanella oneidensis MR-1, as a model electroactive microorganism (EAM) for extracellular electron transfer (EET) study, plays a key role in advancing practical applications of bio-electrochemical systems (BES). Efficient genome-level manipulation tools are vital to promote EET efficiency; thus, a powerful and rapid base editing toolbox in S. oneidensis MR-1 is developed. Firstly a CRISPR/dCas9-AID base editor that shows a relatively narrow editing window restricted to the "-20 to -16" range upstream of the protospacer adjacent motif (PAM) is constructed. Cas9 is also confined by its native PAM requirement, NGG. Then to expand the editable scope, the sgRNA and the Cas-protein to broaden the editing window to "-22 to -9" upstream of the PAM are engineered, and the PAM field to NNN is opened up. Consequently, the coverage of the editable gene is expanded from 89% to nearly 100% in S. oneidensis MR-1. This whole genome-scale cytidine deaminase-based base editing toolbox (WGcBE) is applied to regulate the cell length and the biofilm morphology, which enhances the EET efficiency by 6.7-fold. WGcBE enables an efficient deactivation of genes with full genome coverage, which would contribute to the in-depth and multi-faceted EET study in Shewanella.


Assuntos
Sistemas CRISPR-Cas , Shewanella , Elétrons , Edição de Genes , Shewanella/genética
8.
J Hazard Mater ; 401: 123318, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32623307

RESUMO

Here, inspired by the poisoning process of heavy metal in human body that the accidental ingested heavy metal can anchor to the functional groups of DNA/protein/enzyme to exert their toxicities during the rapid blood circulation, we developed the adsorbent that enveloped Etched UiO-66 with abundant functional groups into chitosan (CTS) aerogel to capture Pb(II) and Cd(II) in aqueous and apple juice. SEM, XRD and FTIR spectra were used to characterize the Etched UiO-66/CTS aerogel. The results showed that Etched UiO-66/CTS aerogel has a three-dimensional porous structure, and -OH groups of CTS interact with Zr(IV) of Etched UiO-66 to form the stable UiO-66/CTS aerogel. Benefiting from the intrinsic properties of porous and abundant functional groups, Etched UiO-66/CTS aerogel exhibits satisfactory adsorption capacities of 654.9 mg g-1 for Pb(II) and 343.9 mg g-1 for Cd(II) at 45 °C. Moreover, the aerogel shows excellent removal efficiencies of 98.21% for Pb(II) and 98.70% for Cd(II) with initial concentration of 1.0 mg L-1 in apple juice with little effect on the quality of apple juice. This strategy of mimetic heavy metal ions' poisoning behavior opens up a new avenue for the removal of heavy metal ions in complex matrices.


Assuntos
Quitosana , Malus , Metais Pesados , Adsorção , Cádmio , Humanos , Íons , Chumbo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...